投稿指南
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。

语言学中文核心期刊要目总览(语言学中文核心

来源:当代语言学 【在线投稿】 栏目:综合新闻 时间:2022-12-07
作者:网站采编
关键词:
摘要:2017 年,机器之心就获知邓力、刘洋教授等人在编写一本 NLP 领域的书籍《Deep Learning in Natural Language Processing》,一直以来都对此书有所期待。此书介绍了深度学习在 NLP 常见问题中的应

2017 年,机器之心就获知邓力、刘洋教授等人在编写一本 NLP 领域的书籍《Deep Learning in Natural Language Processing》,一直以来都对此书有所期待。此书介绍了深度学习在 NLP 常见问题中的应用,还对 NLP 未来发展的研究方向进行了探讨,包括神经符号整合框架、基于记忆的模型、先验知识融合以及深度学习范式(如无监督学习、生成式学习、多模学习、多任务学习和元学习等)。

语言学中文核心期刊要目总览,关于自然语言处理的新书有哪些推荐?

2017 年,机器之心就获知邓力、刘洋教授等人在编写一本 NLP 领域的书籍《Deep Learning in Natural Language Processing》,一直以来都对此书有所期待。此书介绍了深度学习在 NLP 常见问题中的应用,还对 NLP 未来发展的研究方向进行了探讨,包括神经符号整合框架、基于记忆的模型、先验知识融合以及深度学习范式(如无监督学习、生成式学习、多模学习、多任务学习和元学习等)。

官方书籍地址:https://www.springer.com/gp/book/9789811052088

自然语言处理(NLP)旨在使计算机可以智能地处理人类语言,是跨越人工智能、计算科学、认知科学、信息处理和语言学的重要跨学科领域。由于计算机和人类语言之间的交互技术的进步,语音识别、对话系统、信息检索、问答和机器翻译等 NLP 应用已经开始重塑人们识别、获取和利用信息的。

NLP 的发展经历了三次浪潮:理性主义、经验主义和深度学习。在第一次浪潮中,理性主义方法主张设计手工制作的规则,将知识融入 NLP 系统,这种主张假设人类思维中的语言知识是通过通用继承预先固定下来的。在第二次浪潮中,经验方法假设丰富的感官输入和表面形式的可观察语言数据是必需的,并且足以使大脑学习自然语言的详细结构。因此,人们开发了概率模型来发现大型语料库中语言的规律性。在第三次浪潮中,受生物神经系统的启发,深度学习利用非线性处理的层次模型,从语言数据中学习内在表征,旨在模拟人类的认知能力。

深度学习和自然语言处理的交叉在实际任务中取得了惊人的成功。语音识别是深度学习深刻影响的第一个工业 NLP 应用。随着大规模训练数据变得可用,深度神经网络实现了比传统经验方法低得多的识别误差。深度学习在 NLP 领域的另一个成功应用是机器翻译。使用神经网络对人类语言之间的映射进行建模的端到端神经机器翻译已经证明可以大大提高翻译质量。因此,神经机器翻译已迅速成为大型科技公司(谷歌、微软、Facebook、百度等)提供的主要商业在线翻译服务的新技术。NLP 的许多其他领域,包括语言理解和对话、词法分析和解析、知识图谱、信息检索、文本问答、社交计算、语言生成和文本情感分析,也通过深度学习取得了很大的进步,掀起了 NLP 发展的第三次浪潮。如今,深度学习是应用于几乎所有 NLP 任务的主导方法。

作者对三大浪潮分析得出的结论是:当前的深度学习技术是从前两大浪潮发展的 NLP 技术在概念和范式上的革命。这场革命的关键支柱包括语言实体(子词、单词、短语、句子、段落、文档等)的分布式表示,通过嵌入、嵌入的语义泛化、语言的长跨深度序列建模、有效地表示从低到高的语言水平的分层网络以及端到端的深度学习方法,来共同完成许多 NLP 任务。在深度学习浪潮之前,这些都不可能,不仅是因为在之前的浪潮中缺乏大数据和强大的计算,而且同样重要的是,近年来我们错过了正确的框架,直到深度学习范式出现。

这本书的主要目的是综述深度学习在 NLP 领域的近期前沿应用。本书会展示当前最佳的 NLP 为中心的深度学习研究,并聚焦于探讨深度学习在主要的 NLP 应用中发挥的作用,包括口语理解、对话系统、词法分析、语法分析、知识图谱、机器翻译、问答、情感分析、社交计算和从图像生成自然语言。本书适用于有计算机技术背景的读者,包括硕士生、博士生、博士后研究员、教学者和产业界研究者,以及任何想快速了解 NLP 深度学习最新进展的读者。

本书由全球知名的 Deep Learning 和 NLP 专家邓力博士领导国内外一批活跃的 NLP 研究人员撰写,全面介绍了深度学习如何解决 NLP 中的基本问题,并汇总了大多数深度学习方法应用于 NLP 领域的最新进展(包括 2017 下半年的最新研究进展)。

本书第一章首先回顾了 NLP 的基础知识以及本书后续章节所涵盖的 NLP 的主要范围,然后深入探讨了 NLP 的历史发展,总结为三大浪潮和未来方向。第 2-10 章对应用于 NLP 的深度学习最新进展进行了深入研究,分为九个单独的章节,每个章节涵盖 NLP 的一个(很大程度上是独立的)应用领域。每章的主体由在各自领域积极工作的主要研究人员和专家撰写。

文章来源:《当代语言学》 网址: http://www.ddyyxzzs.cn/zonghexinwen/2022/1207/907.html



上一篇:做中国文化的“摆渡人”(海客话中国)
下一篇:语言学文献综述怎么写(文献综述怎么述)

当代语言学投稿 | 当代语言学编辑部| 当代语言学版面费 | 当代语言学论文发表 | 当代语言学最新目录
Copyright © 2021 《当代语言学》杂志社 版权所有 Power by DedeCms
投稿电话: 投稿邮箱: